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A competent breathing circuit is mandatory to the safe
and effective delivery ofoxygen and anesthetic gases to
the patient. Studies have shown that failures in the
circuit are the most likely causes ofanesthetic mishaps.
Unfortunately, the complexity of the system renders
traditional monitoring methods ineffective. We have
developed a hierarchical artificial neural network
monitor that is capable ofexamining ventilator signals.
It was trained to identify 23 faults in the breathing
circuit during ventilator controlled breathing and 21
faults during spontaneous breathing. The networks
correctly identified afault condition in 92% and 83% of
cases for ventilator and spontaneous data, respectively.
The correct fault type was found in 76% and 68% of
casesfor ventilator and spontaneous data, respectively.
Results show that the network met our criteria for a
holistic, specific. andvigilant monitoring system.

INTRODUCTION

During surgical procedures, a patient who receives
general anesthesia will require breatiing assistance from
a mechanical ventilator in order to accommodate for the
artificially suppressed pulmonary drive. The ventilator
regulates respiratory rate, tidal volume, and gas mixture
in order to provide oxygen to the patient and to remove
CO2. Additionally, if inhaled anesthetic gases are used,
the ventilator provides these agents in the proper
concentrations.

The most common breathing circuit used for anesthesia
in the United States is the circle breathing circuit, a
semi-closed system that chemically removes CO2 from
exhaled gases, scavenges excess anesthetic gases, and
adds fresh air to replace any lost volume. Although
simple in design, the breathing circuit is mechanically
complex because of the many hoses, fittings, valves and
drive mechanisms required. This complexity can lead to
failures in the breathing circuit due to disconnections,
obstructions, leaks and incompetent valves. All of these
failures can have serious consequences for the patient.
As several studies of anesthetic mishaps have shown,
most respiratory mishaps are due to failures in the
ventilator circuit`3 It is believed that most of these
could be avoided through better monitoring.

Traditionally, threshold alarms have been used on
breathing circuits to monitor for out of range CO2,
pressure, and/or flow. Threshold alarms have limited

capabilities, though, because they typically do not
automatically adjust for dynamic changes in either the
patient or the breathing circuit. They also are extremely
limited in the amount of information that they can
convey to the anesthetist because any single threshold
alarm does not distinguish multiple etiologies of
malfunction (e.g. a "high pressure" alarm could indicate
a hose obstruction, a stuck valve or a change in patient
physiology). A specific malfunction is not identified;
the clinician must seek the cause of the alarm, often
unsystematically and unsuccessfully. Threshold alarms
are also notorious for causing numerous "false" alarms,
unfortunately forcing many users to simply disable them.

A better breathing circuit monitor will be holistic,
specific, and vigilant. By holistic we mean that the
monitor will simultaneously examine many aspects of
the system and use several pieces of information in order
to determine the state of the system. By specific we
mean that the monitor will provide a distinct message
for each breathing circuit failure it is capable of
detecting. Finally, by vigilant we mean that the monitor
will constantly scrutinize the system throughout the
entire surgical procedure, adjusting to changes in the
operating environment that may affect the monitor's
performance.

To implement a monitor with these capabilities, the
detection system must be able to quickly process diverse
signals from a wide range of operating environments,
and then resolve circuit failures that may have only
subtle distinctions. Because anesthesiologists often do
not recognize abnormalities in available waveform data
that may indicate many of the important circuit faults,
the monitoring system must be able to independently
discover underlying relationships between input signals
and circuit status. Artificial neural networks (ANNs) can
provide the capabilities described in order to implement
an intelligent monitoring system.

METHODS

Background
The Anesthesiology Bioengineering Laboratory, in
conjunction with Ohmeda, has been developing an
ANN-based alarm system for the Ohmeda Modulus CD
anesthesia machine. The alann system uses CO2,
pressure and flow waveform signals provided by the
machine in order to detect 23 faults in the breathing
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circuit (see Table 1).

Orr' used an ANN to process signals from airway C02,
pressure, and flow sensors in order to detect 14 faults in
the breathing circwut. The input signals were collected
using a Michigan Instruments lung simulator with the
ventilator in drive mode. Results of an ANN for
detecting 19 faults using the Modulus CD's
commercially equipped CO2, pressure and flow sensors
were reported by Farrell et. a15. They collected data from
seven dogs anesthetized with halothane and
mechanically ventilated. Several different flow rate,
tidal volume, and inspiratory: expiratory ratio settngs
were used, along with different combinations of lung
compliance and airway resistance. Differential features
were used in order to simplify detection and differentiate
fault conditions from system recovery. The research
presented here extends this system to 23 faults, and adds
the capability to detect faults during simulated
spontaneous breathing. Absolute features were used in
this research so that the state of the breathing circuit
could be determined immediately. In addition, the use
of hierarchical network structures were studied in order
to optimize the monitoring system.

Table 1. Breathing Circuit Faults

1. Leak in endotracheal tube
2. Leak in inspiratory hose
3. Leak in CO2 canister
4. Gas sampling port disconnection
5. Fresh gas hose disconnection
6. Endotracheal tube disconnection
7. Disconnect at Y-piece, distal to sampling port
8. Inspiratory hose disconnection
9. Expiratory hose disconnection, proximal
10. Expiratory hose disconnection, distal
11. Ventilator hose disconnection
12. Expiratory hose obstruction
13. Leak in expiratory hose
14. Inspiratory hose obstruction
15. Endotracheal tube obstruction
16. Inspiratory valve stuck open
17. Inspiratory valve stuck closed
18. Expiratory valve stuck open
19. Expiratory valve stuck closed
20. 02 sensor disconnect
21. TVXclipoff
22. Pressure sensor line occluded
23. Leak in bellows

Data Collection
Two sets of data were collected for this research. For
the first data set, signals were generated during ventilator
controlled breathing. The Ohmeda anesthesia machine
was attached to the Michigan Instruments Ventaid test
lung. Tidal volume, respiratory rate, inspiratory to
expiratory ratio (I:E ratio) and fresh gas flow were varied
to provide a wide range of operating conditions. Lung
compliance and airway resistance were also varied. The
combinations of all the ventilator settings, lung
compliances and airway resistances produced 48
different operating conditions for each of the 23 faults
shown in Table 1.

Faults in the breathing circuit were manually created by
disconnecting hoses, pinching hoses, opening pre-made
"leaks", and clamping one-way valves. Each fault was
maintained for at least five breaths. The fault was then
removed and the system allowed to return to its normal
operating level before the next fault was created. The
breaths generated during recovery from a fault, until the
time when the system retumed to a normal level, were
collected but not used for ANN training. Each fault
constituted a numbered "event", regardless ofhow many
breaths it lasted. For the 23 faults and 48 operating
conditions, this came to 1104 total fault events, plus
1105 non-fault (normal) events.

CO2, flow and pressure signals from transducers
available on the Modulus CD were sampled at 30 Hz by

a personal computer attached to the anesthesia machine.
A breath detection algorithm was used on each of the
three signals: when a full breath was detected for a
particular signal, a set of features was derived from the
signal and saved to computer disk, along with header
information to identify the ventilator state, fault
condition, event number, breath number, lung
compliance and airway resistance. The occurrence of a
breath detection for any one of the three signals
constituted a numbered "block". Sixteen CO2 features,
14 flow features, and 14 pressure features were
calculated, respectively.

A second set of "spontaneous" respiratory data was
collected from the Ohmeda machine. Spontaneous
breathing was simulated by driving one side of the lung
simulator with a second ventilator while the other side
provided signals to the anesthesia machine. The second
ventilator was controlled by a computer program that
randomly varied inspiratory pause, tidal volume,
respiratory rate and inspiratory flow around a set
baseline. A novel automatic fault creator (developed by
the Anesthesia Bioengineering Laboratory) was used to
generate the circuit defects, eliminating any human
inconsistency. Because this second data set simulated
spontaneous breathing, "ventilator hose disconnection"
(fault 11) and "leak in bellows" (fault 23) were
eliminated from the data set. "TVX clip off' (fault 21)
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was also eliminated because it could not be
automatically created. This left 20 faults against which
to train the spontaneous ANN.

ANN Modularization
The ANN hierarchy consisted of three stages: Stage I
was a single network that classified pulmonary
compliance and resistance (four possible values: "high-
high", "high-low", "low-high", "low-low"); Stage 2 had
four networks (one for each compliance-resistance type)
that determined if a fault was present; Stage 3 had four
networks (one for each compliance-resistance type) that
determined the fault type (23 possibilities for ventilator
controlled breathing or 20 for spontaneous breathing).
This hierarchical structure is shown in Figure 1.

It was hypothesized early in ANN development that
separating data sets based on lung compliance and
airway resistance would provide both better fault
resolution and an added piece of physiological data for
the clinician. Therefore, an initial stage was added to
the ANN hierarchy that determined lung compliance
("high" or "low") and airway resistance ("high" or
"low"). In our test configuration, high compliance and
low resistance were considered "normal" conditions.

A separate fault/no fault ANN was trained for each of the
four compliance-resistance types. The result of the
compliance-resistance ANN was used to select the
proper ANN. This hierarchy more than quadrupled the
number of ANNs, but each ANN could be trained with
one-fourth the data of a monolithic ANN, and the
network complexity (i.e. number of middle layers and
nodes per middle layer) could be reduced.

During data collection, many more normal condition
blocks were generated than fault condition blocks.
ANNs are susceptible to slow training and biased
outcomes if the distribution of target classes is not
uniform.6 In order to use as many normal blocks as
possible, with the hope of lowering false positive rates,
the system was divided into a preliminary stage that
determined the fault/no fault condition, and a secondary
stage that discriminated the fault type if the preliminary
stage indicated a breathing circuit fault. Thus, the
preliminary stage ANN was able to use as many normal
blocks as there were total fault blocks in a training set.
The secondary stage ANN was able to use an equivalent
number of blocks for each fault type in its training set.
This eliminated any bias in either stage and provided the
maximum number oftraining pattems.

Data Preprocessing
Because the ANN processing was divided into three
stages, three different training data sets were needed.

Figure 1. ANN Architecture
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First, the number of blocks for each fault was found.
Then, the fault with the least number of blocks, N.mn, was
identified. An 80/20 training pattem to testing pattern
ratio was used. Therefore, the number of training blocks
for any fault was 0.8*N,,,, A master training data file was
generated by randomly picking 0.8N,,,,, patterns of each
fault type, along with 23*0.8*Nmin normal blocks or
20*0.8Nm,n normal blocks (randomly chosen) for the
ventilator controlled breathing set and the spontaneous
breathing set, respectively. The remaining pattems were
held out to construct a master test data file.

All the patterns from the master training file were used
to train the Stage 1 network. The patterns were
normalized by first finding the median and median
deviation (absolute deviation from the median) of each
feature. Median and median deviation were used
because feature distributions were rarely Gaussian and
often contained significant outliers. Thus, the median
and median deviation provided a more robust feature set
than that given by mean/standard deviation or
maximum/minimum normalization techniques. To
normalize each feature of each pattern, the feature's
median was subtracted from the feature and the
difference was then divided by the median deviation.
The master test file was normalized using these same
values.

For Stage 2, four training and testing data files were
constructed, one for each of the four networks. Each file
contained only those pattems that corresponded with the
compliance/resistance type. The median and median
deviation of each training file were used to normalize the
data

The files from Stage 2 were used to form the Stage 3
files by simply deleting the normal patterns. Once again,
the median and mean deviation of each training file were
used to normalize the data.
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We used standard "one output node per class" coding to
generate the target vectors. The node corresponding to
the target class was set to 0.9 while the other nodes were
set to 0.1. For the Stage I ANN, this produced a vector
of size 4. For the Stage 2 ANNs, we were able to use a
single output node since coding with two nodes is the
mathematical equivalent. For the Stage 3 ANNs, we had
vectors of size 23 and of size 20 for venfilator controlled
breatiing and spontaneous breatiing, respectively.

ANN Training
Multilayer, feedforward perceptron networks (MLPs)
were used exclusively in this research. All nodes in
active layers used logistic activation functions with bias
inputs. Each layer in a network was fully connected to
its adjacent layers. We used three layer networks in all
stages. The first layer was a pass-through layer that
simply directed all features in unmodified form to all the
nodes in the second layer. Various second layer sizes
were tried before settling on an optimum configuration.
For Stage 1, this turned out to be 20 nodes; For Stage 2,
15 nodes; For Stage 3, 30 nodes.

Each ANN in the hierarchy was trained using
backpropagation with momentum. Weights were
updated after each pattem presentation. An intemal test
set, consisting of 10% of the pattemrs in a training set,
was held out and used to judge when to stop training:
training was stopped when mean squared error on the
internal test set began to consistently diverge from that
of the remaining training set. The network was then
evaluated against the corresponding test data set.

RESULTS

The results for the Stage 2 fault/no-fault networks are
shown in Table 3. The percent of True Positive (TP)
and False Positive (FP) blocks are given for the networks
trained to recognize high compliance-low resistance
blocks. Results for the other Stage 2 networks were
nearly identical. As expected, fault detection (TP)
during ventilator controlled breathing was superior to
that of spontaneous breathing.

Table 3. Results for Stage 2 H-L Networks

Ventilator

Train Test

Spontaneous

Train Test

TP (%) 93 92 86 83
(N) (3201) (809) (3935) (992)

FP (%) 1 3 0 4
(N) (3201) - (4982) (3935) (5093)

We also examined how long it took each network to
correctly identify a fault condition. Table 4 shows the
percent of correctly identified fault blocks at each breath
after the fault was created (results shown are for the high
compliance/low resistance network). Note that by the
third breath virtually all the blocks are correctly
identified by the ventilator network. The spontaneous
network appears to need at least five breaths before it
operates at a nearly equal level.

Table 4. Percent of Correctly Identified Fault Blocks
at the Corresponding Breath After Fault Creation

Table 2 shows the percent of correctly identified blocks
for the Stage I compliance-resistance networks for the
ventilator controlled and spontaneous breathing data
sets. Uncharacteristically, results for the test sets are
slightly better than those for the training sets. The test
sets contained a much higher percentage of normal
blocks, which likely biased the results. Surprisingly, we
found that the network trained with the spontaneous
breathing data performed as well as the network trained
with the ventilator controlled breathing data.

Table 2. Results for Stage 1 Networks

Ventilator Spontanieous

Train Test _rLn Test

Correct (%) 92 97 92 97
(N) (25446) .(21301) [31550)L (25058)

Breath Number

2 3 4 >4

Ventilator

Train % 56 93 100 99 100(N) (391) (590) (563) (571) (1086)

Test 54 93 99 98 99(N) (98) (130) (152) (139) (290)

Spontaneous

Train % 20 69 87 90 97
(N) (329) (445) (447) (439) (2275)

Test % 18 58 87 90 95-(N) 84) (103) (109) (107) (589)

Although the Stage 2 networks missed 8% and 17% of
the fault blocks, we were encouraged that the results of
Table 4 might show that, given enough blocks, every
fault could be detected. Therefore, we developed a
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criterion that stated that if 3 of the last 5 blocks indicated
a fault, then a fault must exist. Using this criterion, the
networks were able to find every fault event in the
ventilator controlled breathing data set, while missing
only two events in the spontaneous breathing data set.
We were also able to use this criterion to lower false
positive indications.

Table 5 shows the results of the Stage 3 fault
discriminator networks, again for the high compliance-
low resistance networks. This was the most difficult test
for the ANNs. However, the ventilator network
correctly identified 80% of the fault patterns, while the
spontaneous data network correctly identified 75%. For
the ventilator network, there were only 9 faults with
blocks incorrectly classified more than 20% of the time,
while 3 of the faults were incorrectly identified less than
10% of the time. For the spontaneous network, there
were 9 faults with blocks incorrectly identified more
than 25% of the time, while 4 of the faults were
incorrectly identified less than 20% of the time.

Table 5. Results for the Stage 3 H-L Networks

Ventilator Spontaneous

Train Test Tram| Test

Correct (%) 86 80 83 75
(N) (3024) (3986) (2664) (2263)

DISCUSSION

We have demonstrated that a hierarchical artificial
neural network can correctly identify faults in an
anesthesia breathing circuit in 83% or more of the cases.
The network can distinguish the fault type in 75% or
more of the cases. The network also provides valuable
clinical data by correctly determining lung compliance
and airway resistance at least 92% of the time. It is able
to work in both ventilator controlled and spontaneous
breathing modes. The network's abilities to
simultaneously monitor several aspects of the breatiing
circuit, provide exact fault location messages, and
diligently evaluate the circuit throughout an anesthetic
case therefore meets our criteria for a holistic, specific,
and vigilant monitoring system.

Results reported here are for blocks of data Typically,
a CO, block, a flow block, and a pressure block made up
one breath. While one block of data may be corrupted or
may not contain enough information alone to distinguish
a fault condition, a full breath's worth of data is likely to
contain a better picture of the true state of the system.

Therefore, an output decision rule that uses several
blocks of data should improve classification results.
This hypothesis was partially confirned by the results
shown in Table 4 and by the results of the 3-of-5
criterion discussed earlier.

Because the outputs of our Stage 1 and Stage 2 networks
had low dimensionality, the ANNs were fully capable of
achieving low output errors. However, high output
dimensionality, as in the Stage 3 networks, hinders
network training and may prevent convergence to
suitable network parameters. Thus, we may need to
define a fourth stage in the hierarchy that divides faults
into logical clusters (i.e. disconnects, leaks, occlusions).
We may also be able to employ error-correcting output
codes instead of our "one node per class" coding in
order to improve our fault classification.7

Future research goals include expanding the ranges of
ventilator settings, lung compliances and airway
resistances. While the operational range over which we
tested was quite wide, we cannot positively predict
performance outside this range. We also plan to test the
networks against patients undergoing anesthetic
procedures. This should test the robustness of our
networks and provide us with additional network
training data.
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